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1 Introduction

Many cancers escape detection due to the density of surrounding breast tissue. For example,

differences in attenuation of the various soft tissue structures in the female breast are small, and

it is necessary to use low levels of X-ray energy to obtain high contrast in mammographic film.

Since contrast between the soft tissues of the breast is inherently low and because relatively minor

changes in mammary structure can signify the presence of a malignant breast tumor, the

detection is more difficult in mammography than in most other forms of radiography. The

radiologist must search for malignancy in mammographic features such as microcalcifications,

dominate and stellate masses, as well as textures of fibrous tissues (fibroglandular patterns).

A primary breast carcinoma can metastasize when it consists of a relatively small number of

cells, far below our present threshold of detection. The importance of diagnosis of breast cancer

at an early stage is critical to patient survival. Despite advances and improvements in

mammography and mammographic screening programs, the detection of minimal breast cancer

(those cancers 1.0 cm or less in diameter) remains difficult. At present, mammography is capable

of detecting some cases through indirect signs, particularly through the presence of characteristic

microcalcifications. It has been suggested that as normally viewed, mammograms display only

about 3% of the information they detect! [2]. The inability to detect these small tumors

motivates the multiscale imaging techniques presented in this report.

Digital image processing techniques have been applied previously to mammography. The

focus of past investigations has been to enhance mammographic features while reducing the

enhancement of noise. Gordon and Rangayyan [10] used adaptive neighborhood image processing

to enhance the contrast of features relevant to mammography. This method enhanced the

contrast of mammographic features as well as noise and digitization effects. Dhawan [7, 8, 9] has

made significant contributions towards solving problems encountered in mammographic image

enhancement. He developed an adaptive neighborhood-based image processing technique that

utilized low-level analysis and knowledge about a desired feature in the design of a contrast

enhancement function to improve the contrast of specific features. Recently, Tahoces [25]

developed a method for the enhancement of chest and breast radiographs by automatic spatial

filtering. In their method, they used a linear combination of an original image and two smoothed

images obtained from the original image by applying different spatial masks. The process was

completed by nonlinear contrast stretching. This spatial filtering enhanced edges while minimally

amplifying noise.

Methods of feature enhancement have been key to the success of classification algorithms. Lai

[11] compared several image enhancement methods for detecting circumscribed masses in

mammograms. They compared an edge-preserving smoothing function [22], a half-neighborhood

1



method [23], k-nearest neighborhood, directional smoothing [6] and median filtering [3], and in

addition proposed a method of selective median filtering.

In the fields of image processing and computer vision, transforms such as the windowed

Fourier transforms that can decompose a signal into a set of frequency intervals of constant size

have been used in many applications, including image compression and texture analysis. Because

the spatial and frequency resolutions of these transforms are constant, the information provided

by such decompositions is not localized in the spatial domain. A wavelet transform

[4, 5, 17, 18, 19, 20] is a decomposition of an image onto a family of functions called a wavelet

family. In comparison to a windowed Fourier transform which has a fixed resolution in the spatial

and frequency domain, the resolution of a wavelet transform varies with a scale parameter,

decomposing an image into a set of frequency channels of constant bandwidth on a logarithmic

scale. This variation of resolution enables the wavelet transform to "zoom" into the irregularities

of an image and characterize them locally.

In this report we introduce a novel method for accomplishing adaptive contrast enhancement

[13, 14, 15]. We describe methods of image enhancement that use separable and non-separable

analyzing functions to compute multiscale representations. Mammograms are then reconstructed

from transform coefficients modified at each level by both local and global non-linear operators.

We show preliminary results that suggest such methods can emphasize significant features in

digital mammography for improved visualization of breast pathology.

1.1 Framework for Multiscale Analysis

During the past year we have accomplished mammographic feature analysis through three

multiresolution representations: the dyadic wavelet transform, the v-transform or Frazier-Jawerth

transform (FJT) and the hexagonal wavelet transform. By using multiresolution representations,

we may decompose an image into a multiresolution hierarchy of localized information at different

spatial frequencies. The representations used in our study are more attractive than traditional

multiresolution techniques because perfect reconstruction is possible. Our approach for

mammographic feature analysis consists of the application of non-linear techniques for image

enhancement within levels of a redundant multiresolution representation (frames).

Multiscale wavelet representations suggest a mathematically coherent basis not only for

existing multi-grid techniques, but also for exploiting non-linear systems. Multiresolution wavelet

analysis provides a natural hierarchy in which to embed an interactive paradigm for accomplishing

scale-space feature analysis. Similar to traditional coarse to fine matching strategies, the

radiologist may first choose to look for coarse features (e.g. dominant masses) within low

frequency levels of the wavelet transform and later examine finer features (e.g. microcalcifications)

at higher frequency levels. Choosing wavelets (or analyzing functions) that are simultaneously
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localized in both space and frequency, results in a powerful methodology for image analysis. The

inner-product of a signal f with a wavelet ip ((f, ,) = (2?r)- 1 (, ý)) reflects the character of f

within the time-frequency region where 0 is localized (ý and f are the Fourier transforms of the

analyzing function and the signal, respectively). If * is spatially localized, then two-dimensional

features such as shape and orientation are preserved in the transform space and may characterize

a feature through scale-space. We may "extract" such features by applying geometric constraints

within each level of the transform. We can reduce the complexity of a reconstructed mammogram

by selecting only a subset of features that satisfy certain geometric constraints. We may choose to

focus on only those features oriented in a particular direction. Subsequent image reconstructions

may use the context provided by previously enhanced features to examine (diagnose) additional

features emergent at other scales and orientations. For example, fine vertical features may be

selected and analyzed in the context of previously classified large horizontal features. Thus, our

strategy provides a global context upon which subtle features within finer scales may be classified

incrementally through a precomputed hierarchy of scale-space.

Our approach to feature analysis and classification is motivated in part by recently discovered

biological mechanisms of the human visual system [261. Both multiorientation and multiresolution

are known features of the human visual system. There exist cortical neurons which respond

specifically to stimuli within certain orientations and frequencies. In this report we exploit the

orientation and frequency selectivity of wavelet transforms to make mammographic features more

obvious through localized contrast gain.

Below, we present a concise overview of the multiresolution representations used in our study,

and introduce the notation used to describe the techniques discussed in later sections. In the next

section we address the use of non-linear techniques for image enhancement within the context of

multiresolution representations.

A multiresolution representation divides the frequency spectrum of an image x into a low-pass

sub-band image y0L and a set of band-pass sub-band images y*, i = l,..., L, j = l,..., M, where

L and M denote the number of levels and orientations for a representation, respectively. Notice

that a sub-band image without orientation selectivity is denoted by j = 0. For example, in the

case of an isotropic multiresolution decomposition, j = 0 for all levels of the representation. In

general, multiresolution representations are implemented by a cascade of analysis/synthesis (A/S)

filter banks. For example, Figure 1 shows the implementation of a two-level (L = 2)

multiresolution representation which partitions orientations into three bands (M = 3) by using a

cascade of two 4-channel A/S filter banks. The analysis filters, denoted by F, are used to

compute the multiresolution decomposition of an image z, while the synthesis filters, denoted by

G, are used to reconstruct the original image from its multiresolution representation (transform

coefficients). Both, analysis and synthesis sections of the A/S filter bank form a band-splitting
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Figure 1: A two-level 4-channel analysis/synthesis filter bank.

system consisting of one low-pass filter, denoted by Fo and Go, respectively, and M band-pass

filters, denoted by Fi and Gi, i = 1,...,M, respectively. Notice that the A/S filter banks are

cascaded hierarchically through the low-pass band of the fiter bank in order to accomplish a

multiresolution representation.

Let Pj and G( denote the equivalent filters for the ilh level and j'h channel of a cascade of

analysis and synthesis filters, respectively. Let Wi [x] denote the operation of filtering x with the

equivalent filter Fj. Then, the sub-band images of an L-level multiresolution decomposition are

given by

Yj, = (1)

Similarly, let Wj-j [y] denote the operation of filtering image y with the equivalent filter G(.

Then, an L-level multiresolution reconstruction may be written as

L M

S= WZI[ L] + W 1y ] (2)
i=--1 j=l

By combining equations (1) and (2) we obtain the general expression for an L-level

multiresolution decomposition and reconstruction

L M

S= Wf [WLOIX]] + Z Z Wi [WI[z]]. (3)
i=l j---1

The three multiscale transforms used in our study shall follow the general formulation

presented above, but are characterized by distinct analysis/synthesis filter banks. In the following

subsections, we provide a brief overview of the mathematical formulation for each of the filter
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banks used in our investigation. For consistency and clarity, we adopt the above notation

throughout the repori.

1.1.1 Dyadic Wavelet Transform

In [16], Mallat showed that a two-dimensional dyadic wavelet transform can be easily constructed

from one-dimensional wavelets. Suppose A and B are one-dimensional low-pass and high-pass

filters, respectively. Furthermore, suppose that A and B satisfy IA(w)12 + IB(w)12 = 1. Then,

two-dimensional analysis filters implementing a dyadic wavelet transform may be given by

Fo(w.,wy) = A(w.) ® A(wy), Fi(w.,wy) = B(w.) ® C(w.), and F2(w.,wO) = C(w.) ® B(wv),

where Q ® R denotes the tensor product of Q and R, and C(w) is the transfer function of a

one-dimensional discrete fiter satisfying

IC(W)12 = 1 + IA(w)1
2

2

Synthesis filters are easily obtained by

Gi(w.,wy) = Fi(w.,wy), i = 0,1,2,

where Q denotes the complex conjugate of Q.

Hence, a two-dimensional dyadic wavelet transform results in a multiresolution representation

which partitions orientations into two bands (M = 2). Figure 2 displays the magnitude of the

equivalent filters Fj for levels 1, 2, and 3, and clearly shows that for the dyadic wavelet transform,

orientations are partitioned into horizontal and vertical bands.

In the next subsubsections we describe two non-separable multiscale representations useful for

improving local contrast in digital mammography.

1.1.2 so-Transform

In [12], Laine showed that a two-dimensional p-transform may be implemented by an

analysis/synthesis filter bank constructed from isotropic filters (M = 0). In this case, the general

expression for an L-level multiresolution decomposition and reconstruction is simply reduced to

L
X = w- 1 [WXJ],

i=l

where the subindex j has been suppressed for clarity.

A useful set of equivalent analysis filters for an L-level p-transform is given by

1 - Co. (logs (2-2 ,fo+1r112 f

0, otherwise,
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Figure 2: Analyzing filters F used in the dyadic wavelet transform. From top to bottom, i = 1,

i = 2 and i = 3. From left to right j = 2, j = 1 and j = 0.

*iI

Figure 3: Analyzing filters F used in the ýp-transform. From left to right, F6 through F1 .

for 2 < i < L - 1. For i = 1 and i = L we have

(r., - W,))2, for 1 < V/wY + I12, W.I1 <w: , I 7i -<S(0, otherwise,

and
FL (w., wy,) = 1 - (FL-l(w.,wY))2, for 0 < II/wrl2 + Iw-I 2 < - ,S( 0, otherwise,

respectively. Equivalent synthesis filters are easily obtained by computing

G'(w.',wy,) = 11(w., wy), i =1.,L.

Figure 3 shows the magnitude of the equivalent filters P for levels 1 thro,,gh 6.

1.1.3 Hexagonal Wavelet Transform

In [1], Adelson showed that it is possible to develop non-separable multiresolution representations

based on hexagonally symmetric analysis/synthesis filter banks. Simoncelli [241 showed that a
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Figure 1: Anialyzjing' filters 1':1 is.l itliliagotial ý%avelvl i1ailsforiii. Fromi lop lo hot toti. i'
and i = 2. I-oni lef't to right j= 0. j = 1 j =2 and j =3.

soluini to Ill te hiexagonial aiuilysis/sy tit li( is filter ban k is given by

li(Q1 _j f, ) ep(- q ,' )11(, r, k"

12 (n) (;2 -1) - ex P( --jQ's!jI ( n I-,k~
I ý( Q) "M -9 Wk 'X(-jQ'SW T I Q -

wvhere Q an ]~'d 1

si - S].S, -[ ] and 53 Y

A low- pass soliut ion for 11(Q) inlt lie above equaltions results in a hae~d-split t uig syst eni which

mayw he cascaded hierarchically thirough the low-pass hand of' tlie .\/S filler banik to produ tce a1

iiiultiresolutit on represent at ion which part it ions orient at ions into0 t Iiree hands (.1 = 3) of' 60

degrees. Ili onr studi~y we used hexagoiial A/S filer hii ks wvith Iinsall regions of stinpport for which

perfect recoinst.ruct ion was well apI'proximinat ed [21]. F'iguire .1 shows t he inagn it tde of Ilie

equiiivalen t hexagonal lilt ers PI' or levels I anud 2.

In thle niext section, we describe I eclilliqutes For iuiodhifyviug I ranrsf-orin coelhicieuuts wit hutin wavOI(

fIimu(s for cont rast en luaricenieit . 'I'lie firIst Iniel hod allows us t o enilplasiie I lie sI riuct uire of local

featutres ( sitigiularit ies wit bin (listinct1 level of scale-slpace while t lie second~ nitetliod is iiore global

in nature.
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2 Body

In this section we describe a general method to accomplish multiscale contrast enhancement.

Here, non-linear techniques for image enhancement are applied within the context of

multiresolution representations. Below we present a general formula for processing sub-band

images to accomplish adaptive co,,trast enhancement of digital mammography. Let f be a user

defined function designed to emphasize features of importance within a selected level i. Then,

enhanced sub-band images Y, may be given by

i= f(!4). (4)

Thus, we obtain an enhanced image : from its multiresolution representation by replacing in

equation (2) selected sub-band images y' with their enhanced counterparts •. In particular, the

image enhancement techniques described below are applied only to band-pass sub-band images of

a multiresolution representation. In general, by defining the function f, we can denote specific

enhancement schemes for modifying sub-band image coefficients within distinct levels of

scale-space.

2.1 Local Enhancement Techniques

A problem for image enhancement in digital mammography is the ability to emphasize

mammographic features while reducing the enhancement of noise. Multiscale representations

localize mammographic features. Previously [14, 15], we presented a local enhancement technique

for digital mammography based on multiscale edges. In this study, enhanced sub-band images

' = f(yj) were given by

= ~ni, n2), if eý (ni, n2) •5 Tý,S (ni,,n2) = j
g'j y"(ni, n2), if e (n1 , n2 ) > T',

where ei is the the edge set corresponding to y4, and gi and T3 are the local gain and threshold at
3 Yj3

level i, respectively. Formal definitions of the edge set for each of the multiscale representations

used in this investigation are presented in the next subsections. Multiscale edges eý are used as an

"index" to increase the local gain of sub-band image coefficients and to emphasize significant

features "living" within level i of the transform space. We have found that an effective strategy to

adaptively select the threshold value is to set Tj proportional to the standard deviation of pixel

values in each yý, that is

Tji= 2n,=-1 
n2---1

where my is the mean value of Yi and N x N is the size of the image. Thus for each band-pass

image the threshold value is directly related to the energy of the image within that band (wavelet
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sub-space). Similarly, g• may be bound adaptively by

_ 3" ji'
where

Tj ma= max{Tj, 1 < i < L}

for j = 1,...,M.

In the next section, we describe how ej was obtained for each of the multiscale representations

used in our investigation.

2.1.1 Dyadic Wavelet Multiscale Edges

For the dyadic wavelet transform [16] we compute multiscale edges by detecting the modulus pi
and angle a' of sub-band images y3 and y4 as follows

/&'(nl,n 2 ) = V(z4i(n1,n2))2 '+ (y(nl,n 2))2

Yin, n2

a'(nl,n 2) = arctan ( Y~(nin2),

where ai(nl, n 2) is approximated to the closest orientation defined over an eight pixel

neighborhood. At level i we define the dyadic-maxima m'(ni, n2) as

n 2) (nl,n2), if ji (ni, n2) is maximum along the
M'(nn 2)= gradient direction ai(ni, n2),

0, otherwise.

Multiscale edges at level i were then obtained by ei = ei= i. Figure 6 shows the set of images

used to identify two-dimensional wavelet-maxima coefficients for the mammogram shown in

Figure 9. The photographs shown in the leftmost column were obtained by combining wavelet

coefficients oriented along the x and y directions. Thus, a single picture is shown for each distinct

level. Note the clear geometric shape of the calcifications seen at the finer levels of the scale-space

and the definition of the fibroglandular patterns throughout the dense tissue. The photographs in

the middle column show the orientation of the coefficients at each level. For purpose of display,

the range 0 to 360 degrees has been mapped onto the gray scale values 0 to 255. The

wavelet-maxima coefficients are shown as binary images in the rightmost column of Figure 6. As

mentioned earlier, these representations shall define a local index for an adaptive weight function

applied to corresponding wavelet coefficients within each level of a transform space.

2.1.2 p-Transform Multiscale Edges

For the ýp-transform we compute multiscale edges ei by first detecting the p-maxima along four

distinct directions defined as follows

9



M'(n{ n2 'n1, n12) 1, if Iy'(ni,n72)1 > ly'(n, + 1,712)1 and
myn(nl, n2) => ly'(n - 1,n2)1,

0, otherwise,

2 ly(nl, n2)1, if ly'(ni, n2)1> ly(n +1, + n2 + 1)1 and
mi(nl, 72) = lyi(ni, n2)1 > ly'(ni - 1, n2 - 1)1,

0, otherwise,
I Iy(nin2)1, if lyt(ni,n2)1 > lyW(n1,n2 + 1)1 and

m3(ni, n 2 ) = ly'(nl, n2)l > Iy'(nl,n - 1)1,M 0, otherwise,

n2) ly(nn2)1, if Iy'(ni,n2)1 > Ily'(ni+1, n 2 -1)l and
m4(nln2) = ly'(nj, n2)l > Iy'(n, - 1,n 2 + 1)1,

0, otherwise.

Multiscale edges at level i are then obtained by combining the w-maxima of distinct orientations

at each level of the transform by

Figure 7 shows the combined p-maxima edges (adaptively thresholded) at level 4 for the

mammogram shown Iu Figure 10.

2.1.3 Hexagonal Wovelet Multiscale Edges

For the hexagonal wavelet transform, sub-band images y', y' and y, partition orientations into

60, 0 and -60 degree bands, respectively. Multiscale edges el, e2 and e3 at level i are obtained

simply by computing the hexagonal-maxima at 60, 0 and -60 degrees, respectively. Figure 8 shows

the union of multiscale edges ei, ei and ei at level 3 for the mammogram shown in Figure 12.

2.2 Global Enhancement Techniques

In this section we present two global enhancement techniques designed in our investigation:

multiscale histogram equalization (MHE) and multiscale adaptive gain (MAG).

2.2.1 Multiscale Histogram Equalization

Histogram equalization of sub-band images provides a global method to accomplish

multiresolution enhancement. We simply define a cummulative density function f as

f(y) = j py(w)dw + Yrnin,

where py(w) = py(w)(ynma - ynin), and py(w) is the probability density function of y. Notice that

f(y) is a single-valued, monotonically increasing function in the range [Ymin, yImax] and satisfies

f(Y~irni) = I/mi, f (I/a) = Y.m. 1
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2.2.2 Multiscale Adaptive Gain

Histogram equalization enhances all pixels uniformly. In another approach, we suppress pixel

values of very small amplitude, and enhance only those pixels that are larger than a certain

threshold T within each level of the transform space. Thus, we have designed the following

function to accomplish this non-linear operation:

f(y) = a [sigm(c(y - b)) - sigm(-c(y + b))], (5)

where 1
a sigm(c(1 - b)) - sigm(-c(1 + b))'

0<b < 1,

and sigm(y) is defined by
sigm(y) - 1 + e-Y'

It can be ea 2y shown that f((y) is continuous and monotonically increasing within the interval

[-1, 1] (similar to histogram equalization). Furthermore, any order derivative of f(y) exists and is

continuous. Therefore, enhancement using f(y) will not introduce any new discontinuities. In

addition, f(y) satisfies the conditions f(0) = 0 and f(1) = 1. Figure 5 shows a plot of f((y) for

typical values of b and c obtained in our study. Clearly, there always exists a T such that pixel

values larger than T are enhanced, while pixel values smaller than T are suppressed. The exact

value of T can be obtained by solving the non-linear equation f((y) - y = 0. However, for

simplicity the threshold is controlled through the parameter b. Similarly, we use the standard

deviation of pixel values to adaptively (automatically) select T. Moreover, we define an

enhancement rate for f(y) as follows

df I[0.25+ .2bc ]
dy y=b a0 [1 + e2bc]2

,z 0.25 ac for bc > 2.

Hence, effective contrast enhancement can be controlled through parameter c alone.

For an input image y with maximum absolute amplitude Ym.ax, we map the image range

[-Ymax, Ymaz] onto the interval [-1, 1]. This is accomplished by using Ymaz as a normalizing

factor in equation (5). Thus, f(y) may be written as

f(y) = a Ymcx [sigm(c(y/ymax - b)) - sigm(-c(y/ymaz + b))].

The benefit of the normalization is that a, b, and c can be set independently of the dynamic range

of the input image (a digital radiograph of unknown density).
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Figure 5: Adaptive gain: f(y) for b = 0.25 and c = 40 overlayed with z =y.

2.3 Experimental Results and Discussion

Preliminary results have shown that the multiscale processing techniques described above, can

make more obvious unseen or barely seen features of a mammogram without requiring additional

radiation. Our study suggests that the analyzing functions presented in this report can improve

the visualization of features of importance to mammography and assist the radiologist in the early

detection of breast cancer. In our study, film radiographs of the breast were digitized at 100

micron spot size, on a Kodak laser film digitizer, with 10-bit quantization (contrast resolution).

Each digital image was cropped to a matrix size of 512 x 512 before processing.

Figure 9(a) shows a typical radiograph of the breast (poor contrast). Figure 9(c) shows an

enhancement obtained from localization defined by two-dimensional multiscale edges of a dyadic

transform, shown in Figure 6(c). In this case, wavelet coefficients associated with the multiscale

edges from level two alone were modified locally by adaptive scale-space weights, as described in

Section 3.1.1. Note that the emphasis on details at level two alone, improved the local contrast of

both micro and macro calcification clusters not visible in the original low contrast mammogram.

For comparison, Figure 9(b) shows the result of enhancement by unsharp masking. Fewer details

are revealed in comparison to the wavelet based method.

Figure 10(a) shows a "dense" mammogram. This class of mammogram is more typical in

younger females due to the greater absorption of X-ray energy by less fatty tissues in the breast.

They remain particularly difficult to diagnose due to lack of contrast, even for radiologist

specializing in mammography. Figure 10(c) shows the result of global wavelet processing for four
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levels of analysis. In this case, the values of transform coefficients within each level of a dyadic

decomposition (excluding the DC cap) were modified by histogram equalization independently.

Since the coefficients are space-frequency representations, contrast modifications on the transform

side are preserved in part on the spatial side. Similar contrast gains were observed for additional

dense radiographs. Figure 10(b) displays the result of standard histogram equalization.

Unfortunately, the dense tissues of the breast image are "washed out".

Figure 11(a) shows a mammogram containing a spicular mass. The lack of sharpness is most

probably due to poor screen-film contact. Figure 11(c) shows the result of adaptive multiscale

processing using the non-separable, non-orthogonal analyzing function described earlier in Section

2.2. In this example, histogram modification was accomplished for an eight level decomposition

via the method of multiscale adaptive gain. Radiologist have observed that the subtle features

including calcifications and the penetration of fibroglandular structures into the obvious mass

tissue are made more clear. In addition, the geometric shape of calcifications (important for

diagnosis) are made more visible and improved definition is seen in the ductules (intra and extra

lobular units) as well as in the arterial structures within the less dense tissue of the breast. Figure

11(b) shows the result of adaptive histogram equalization. Unfortunately, large areas of the breast

are obscured.

Mathematical models of phantoms were constructed to validate our enhancement techniques

against false positives arising from possible artifacts introduced by the analyzing functions and to

compare our methods against traditional image processing techniques of improving contrast. Our

models included features of regular and irregular shapes and sizes of interest in mammographic

imaging, such as microcalcifications, cylindrical and spicular objects and conventional masses.

Techniques for "blending" a normal mammogram with the images of mathematical models, were

developed. The purpose of these experiments was to test the performance of our processing

techniques on inputs known "a priori" using mammograms where the objects of interest were

deliberately obscured by normal breast tissues. The "imaging" justification for "blending" is

readily apparent; a cancer is visible in a mammogram because of its (slightly) higher X-ray

attenuation which causes a lower radiation exposure on the film in the appropriate region of a

projected image. Figure 12(b) shows an example of a mammogram whereby the mathematical

phantom shown in Figure 12(a) has been blended into a clinically proven cancer free mammogram.

The image shown was constructed by adding the amplitude of the mathematical phantom image

to the cancer free mammogram followed by local smooth filtering of the combined image.

Figure 13(a) shows the result after processing the blended mammogram with unsharp

masking. Figures 13(b) through 13(d) were obtained after reconstructing the blended

mammogram from dyadic wavelet transform, p-transform and hexagonal wavelet transform

coefficients modified by multiscale edge sets identified automatically by our adaptive selection
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Contrast values for local enhancement techniques
Feature I COriinJ[ CUNS [ CDyA I CPHI J CHEX

Minute microcalcification cluster 0.0504 0.0911 0.1488 0.1928 0.1391
Microcalcification cluster 0.0327 0.0479 0.1472 0.1022 0.1447
Spicular lesion 0.0241 0.0377 0.0849 0.0766 0.0848
Circular (arterial) calcification 0.0373 0.0601 0.1377 0.1250 0.1099
Well circumscribed mass 0.0115 0.0121 0.0225 0.0160 0.0263

Table 1: Contrast values for enhancement by unsharp masking (UNS) and local enhancement by
multiscale edges obtained from dyadic wavelet (DYA), p-transform (PHI) and hexagonal wavelet
(HEX) coefficients.

Contrast Improvement Index (CII) for local enhancement techniques
Feature I CIIuNs I CIIDyA I CIIPHI CIIHEX

Minute microcalcification cluster 1.8051 2.9505 3.8226 2.7727
Microcalcification cluster 1.4628 4.4990 3.1225 4.4447
Spicular lesion 1.5651 3.5306 3.1860 3.5483
Circular (arterial) calcification 1.6126 3.6929 3.3533 2.9916
Well circumscribed mass 1.0510 1.9497 1.3857 2.3485

Table 2: CII for enhancement by unsharp masking (UNS) and local enhancement by multiscale
edges obtained from dyadic wavelet (DYA), (p-transform (PHI) and hexagonal wavelet (HEX) co-
efficients.

technique described in Section 3.1.3. For purposes of comparing contrast, images within Figure 13

were rescaled by the same linear transformation.

Radiologists at Shands Hospital at the University of Florida have validated that processing

the blended mammogram with such local enhancement techniques introduced no significant

artifacts and preserved the shape of the known mammographic features (calcifications, dominant

masses, and spicular lesions) contained in the original mathematical phantom. Figure 14 shows

enlarged areas containing each feature in the processed mammogram for each method of contrast

enhancement. As in Figure 13, images within each row of Figure 14 were rescaled by the same

linear transformation. Enhancement by multiscale edges provided a significant improvement in

local contrast for each feature included in the blended mammogram. A quantitative measure of
contrast improvement can be defined by a Contrast Improvement Index (CII),

CII - CPrcessed

COriginal

where CProcessed and Coriginal are the contrasts for a region of interest in the processed and

original images, respectively.

In this report we adopt a version of the optical definition of contrast introduced in [21]. The

contrast C of an object is defined by
C f-b

f +b'
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Contrast values for global enhancement techniques
Feature I CHEQ [ CAHE CDYA CPHI CHEX

Minute microcalcification cluster 0.0472 0.0302 0.1982 0.1993 0.2218
Microcalcification cluster 0.0296 0.1023 0.2040 0.2101 0.1919
Spicular lesion 0.0219 0.0437 0.1651 0.1641 0.1457
Circular (arterial) calcification 0.0390 0.1126 0.2136 0.2112 0.2013
Well circumscribed mass 0.0117 0.1586 0.1566 0.1499 0.1046

Table 3: Contrast values for enhancement by histogram equalization (HEQ), adaptive histogram
equalization (AHE) and multiscale adaptive gain processing of dyadic wavelet (DYA), V'-transform
(PHI) and hexagonal wavelet (HEX) coefficients.

Contrast Improvement Index (CII) for global enhancement techniques
Feature I CIIHEQ CIlAHE CIIDYA I CIIPHI [CIIHEX

Minute microcalcification cluster 0.9352 0.5986 3.9290 3.9510 4.3968
Microcalcification cluster 0.9044 3.1258 6.2342 6.4210 5.8645
Spicular lesion 0.9092 1.8161 6.8613 6.8222 6.0558
Circular (arterial) calcification 1.0462 3.0201 5.7296 5.6633 5.3986
Well circumscribed mass 1.0165 13.7433 13.5757 12.9921 9.0705

Table 4: CII for enhancement by histogram equalization (HEQ), adaptive histogram equalization
(AHE), and multiscale adaptive gain processing of dyadic wavelet (DYA), W-transform (PHI) and
hexagonal wavelet (HEX) coefficients.

where f is the mean gray-level value of a particular object in the image, called the foreground,

and b is the mean gray-level value of a surrounding region called the background. This definition

of contrast has the advantage of being independent of the actual range of gray levels in the image.

With the aid of the mathematical phantom we computed local masks to separate the foreground

and background regions of each feature included in the blended mammogram. Table 1 shows the

contrast values for the mammographic features shown in Figure 14 while Table 2 shows the values

for CII. Note that enhancement by multiscale edges performed significantly better than unsharp

masking and consistently improved the contrast of each feature. Figures 15 through 17 show the

improvement of local contrast accomplished by our local enhancement techniques for a sample

scan line profile taken from cross sections of each feature. In all cases co,-trast was improved by

local enhancement of edges while preserving the overall shape of each feature profile.

Figure 18(a) shows the result after processing the blended mammogram with adaptive

histogram equalization (AHE). Figures 18(b) through 18(d) were obtained after reconstructing

the blended mammogram from dyadic wavelet transform, V-transform and hexagonal wavelet

transform coefficients modified by multiscale adaptive gain processing. Figure 19 shows enlarged

areas containing each feature in the processed mammogram for each method of contrast

enhancement. For comparison of contrast, images within Figures 18 and 19 were rescaled
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collectively as in Figures 13 and 14, respectively. Tables 3 and 4 show the contrast values and CH

of the mammographic features displayed in Figure 19. Note that adaptive gain processing

provided the maximum CII value for the minute microcalcification duster, while histogram

equalization and adaptive histogram equalization significantly decreased the contrast of this

feature, possibly introducing diagnostic errors (false negatives). Although adaptive histogram

equalization provided the maximum CII value for the well defined mass, it is clear from Figure 19

that multiscale adaptive gain processing better preserved the morphology of the mass and its

surrounding structures.
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(a) (b) (c)

Figure 6: (a) Combination of horizontal and vertical components of dyadic wavelet coefficients for
levels 1,2 and 3, respectively (top to bottom). (b) Phase of the combined coefficients. (c) Two-
dimensional wavelet maxima coefficients shown as binary edges.
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Figure 7: Combined orientations of ýp edges obtained from level 4 coefficients.

Figure 8: Combined orientations of hexagonal edges obtained from level 3 coefficients.
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(a)

(b) (c)

Figure 9: (a) Original dense mammogram, M41. (b) Enhancement by unsharp masking. (c) Local
enhancement by the method of multiscale edges for dyadic wavelet transform coefficients.
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(a)

(b) (c)

Figure 10: (a) Original dense mammogram, M56. (b) Enhancement by histogram equalization.
(c) Global enhancement by multiscale histogram equalization of dyadic wavelet coefficients.
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(a)

(b) (c)

Figure 11: (a) Mammogram with spicular mass, M73. (b) Enhancement by adaptive histogram
equalization. (c) Global enhancement by multiscale adaptive gain processing of so-transform coef-
ficients.
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(a) (b)

Figure 12: (a) Mathematical phantom. (b) Mammogram M56 blended with phantom shown in (a).
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(a) (b)

(c) (d)

Figure 13: Blended niammnograrn: (a) Enhancement b~y unsharp masking. (b). ~c) and (d) Lo-
cal enhancement b~y multiscale edlges obtained from dyadic wavelet transform. ,;!-transform and
hexagonal wavelet transform coefficients. respectively.
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Figure 15: Sample scan lines displaying local enhancement by the method of multiscale edges for
the dyadic wavelet transform: (a) minute microcalcification cluster, (b) microcalcification cluster,
(c) spicular lesion, (d) circular (arterial) calcification and (e) well circumscribed mass.
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Figure 16: Sample scan lines displaying local enhancement by the method of multiscale edges for
the W-transform: (a) minute microcalcification cluster, (b) microcalcification cluster, (c) spiculaxr
lesion, (d) circular (arterial) calcification and (e) well circumscribed mass.
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Figure 17: Sample scan lines displaying local enhancement for the method of multiscale edges
for the hexagonal wavelet transform: (a) minute microcalcification cluster, (b) microcalcification
cluster, (c) spicular lesion, (d) circular (arterial) calcification and (e) well circumscribed mass.
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(c) (d)

Figure 18: Blended nian~inogratn: (a.) E'nhazicernent by adaptive histogram equalization. (b), (c)
and (d) GlIobal enhancement by mudtiscale adaptive gain processing of dyadic wavelet transform.
ýo-transfortn and hexagonal wavelet transform coefficients. respectively.
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24. Performance Evaluation

In this section we describe (I) the development of mathematical phantoms, (2) a measure of
image quality, (3) evalutation techniques using radiographic phantoms, and (4) the design of a
study to carry out clinical evaluations of processing mammograms.

2.4.1. Mathematical phantoms

The purpose of this task is to quantitatively and objectively evaluate the performance of
wavelet processing algorithms (& any other type of image processing as well). Very good progress
has been made in our attempt to develop appropriate measures of improvements achieved by image
processing algorithms. The fundamental measure of image quality selected by our research group
is the spatial frequency dependent parameter Signal to Noise Ratio [SNR(f)]. By obtaining the ratio
of output SNRo(f) to input SNRi(f) values, the enhancement achieved can be measured.

A graduate student (Yisheng Zheng) has developed mathematical phantoms consisting of
Gaussian signals and with random (Pojsson) noise added. Analysis of both signal and noise is
achieved in the Fourier domain where the Gaussian signal is transformed using a Fast Fourier
Transform (FFT). For the noise, the Auto-Correlation function is first computed and then its
corresponding FFT obtained. The enhancement factor (EF) is given by EF(f) = SNRoISNRi. This
method is currently being applied systematically to investigate the properties of the dyadic wavelet,
and the adaptive gain processing techniques described previously. A paper describing the method
and results has been submitted for presentation at the SPIE Mathematical Imaging: Applications of
Wavelets to Signal and Image Processing, in San Diego, July, 1994.

2.4.2. Image Quality Index

A recent publication by Desponds et al ("Image quality index (IQI) for screen/film
mammography" Physics in Medicine and Biology 36 (1993) 19-33) proposed an intriguing metric
for the measurement of image quality in mammography. A computer simulation of phantom
images used by this Swiss mammographic research group to measure mammographic Image
Quality directly is currently being developed by a graduate student (Yunong Xing). The computer
simulated phantom will be used as an input to the wavelet processing algorithms described earlier
to:

(a) optimize wavelet processing parameters and

(b) to evaluate any improvement in image quality achieved through image processing.

The initial application of this method shall be to the dyadic wavelet. A paper describing the
method and initial results shall be submitted for presentation at the July 1994 SPIE meeting on
Mathematical methods in Medical Imaging IH in San Diego.

2.4.3. Radiographic phantoms

The Radiology department has recently acquired a LoRad biopsy system which has a digital
imaging attachment capable of imaging a small region with a pixel size of 50 micons. During the
next year, we plan to obtain images of physical phantoms, biopsy samples and clinical images
which may then be digitally processed using the wavelet image processing algorithms. The
usefulness of these methods of wavelet processing will be assessed by the measurement of imaging
performance.

Another graduate student (Guoying Qu) has been developing psychophysical techniques to
measure imaging performance using both objective and subjective techniques. Work has also begun
on the development of suitable phantoms to be imaged to simulate features of interest to
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mammography including microcalcifications, masses and spiculations. The work on evaluation of
imaging performance is being prepared for presentation at the AAPM meeting in Los Angeles
(August 1994) and for publication in the journal Investigative Radiology.

2.4.4. Clinical evaluations

A series of 20 mammograms with clinically proven malignant disease have been digitized and
processed resulting in total of nine different mammograms. Processing techniques included dyadic,
hexagonal and phi-wavelets; for each wavelet decomposition, three types of enhancement were
performed including histogram equalization, edge enhancement and adaptive gain enhancement (as
described in Sections 2.1 and 2.2 of this report). A graduate student (Carole Palmer) is currently
working on the evaluation of these processed images. Key clinical questions that have been
selected are as follows: QI. Mass borders; Q2. Spiculations; Q3. Microcalcifications; Q4.
Conspicuity of mass (relative to adjacent tissue); Q5. Internal architecture of mass; Q6.
Architectural distortion of adjacent tissue by mass; Q7. Skin borders; Q8. Skin thickening. For
each processed image the visibility of-these features are compared with the original mammogram
using the ranking scale: I = markedly less than original; 2 = less than original; 3 = similar to
original; 4 = better than original; 5 = markedly better than original.

These results will provide a clear clinical guide to the areas where wavelet processing are
most promising and the respective strengths and limitations of each type of wavelet and
enhancement mode. As such, the work will complement the mathematical and radiographic
evaluations described above. Initial results from this work are being presented at the 1993 RSNA
meeting and will also be submitted for publication to Radiology.

2.5. Database for case studies

During the past year a Radiology Patient Information Data System (RAPIDS) for
Mammography was developed for tracking patient clinical and pathology findings as well as for
clinical management of patients. This will be used to identify candidates for wavelet processing
evaluation.

The American College of Radiology (ACR) requires that data be kept on mammography
patients so reminder letters can be sent, recommendations for treatment or additional studies can be
followed up, status of outside film requests can be done, and mammography - pathology
correlations can be calculated for each radiologist. Mammography software packages generally
perform billing, results reporting, follow up reminders, and general practice management. At the
University of Florida, billing and results reporting are done through the Radiology Information
System, and the radiologists needed software to meet the ACR requirements and to keep track of
data on needle localizations and implants. Prior to this project all data were kept manually on
paper and using several non-integrated software packages.

Radiology Patient Information Data System (RAPIDS) was written for a PC using Clipper
Database Management software that allows input of all relevant data and the generation of reports
and letters. Paper data forms were designed to match the order in which data was entered on the
computer for easy input. The data is organized in five main sections for input; patient
demographics, image information, needle localization information, pathology diagnosis, and implant
details. Complete patient histories are obtained and entered to calculate risk factors and to
investigate risk factors in our patient population. Each study must have findings associated with it
and all pathology findings are entered to calculate positive predictive values for each radiologist.
A closing date for a record is entered when a patient dies or moves to another location to
discontinue reminder letters for follow up examinations.
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Although all data may be viewed for an individual patient, three categories of reports are also
generated; patient information, radiologist reports, and summary reports on date ranges. Patient
reports include: reminder letters based on the recommended time span between mammograms, list
of requested outside films not yet received, patients based on age, family history of cancer, breast
implants, and with other cancers. In addition, a list can be generated on patients with a particular
radiological or pathologic finding. Radiologist reports include mammography - pathology
correlation reports, recommendations for further studies and the results of those studies, and
specific needle localization data. Summary reports include average case loads for each type of
procedure, summary of cancer by stages as specified in the ACR report, summary of palpable and
non-palpable cancers, and summary of cases based on findings.

Utilities included in the package perform daily and weekly backups with restore when
necessary, allow additions to codes used in the database, and facilitate editing of data when
necessary. In addition to all these features RAPIDS can easily be extended to a network
environment and security features like password protection can be incorporated. A complete
functional description of RAPIDS - a minammography database, shall be published in the procedings
of SPIE Medical Imaging conference in February, 1994.

In addition to the database project, connections between the Dupont digitizer, Computer and
Information Sciences( CIS), and an image archive were made. Software that converts Dupont
native format images to ACR-NEMA was written and images were made available on the PACS
network to CIS. Images sent back to Radiology in a raw raster file were converted to ACR-
NEMA by creating an Interfile header (a European image standard developed for Nuclear
Medicine) for each set of images then converting the image to ACR-NEMA for archival, display,
and printing.
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3. Conclusions

During the past year, we have developed a methodology for accomplishing adaptive contrast
enhancement by multiscale representations. Our studies have demonstrated that features extracted from
multiresolution representations can provide an adaptive mechanism for the local emphasis of salient and
subtle features of importance to mammography. The improved contrast of mammographic features make
these techniques appealing for computed aided diagnosis (CAD) and screening mammography. Screening
mammography examinations are certain to grow substantially in the next few years, and analytic
methods that can assist general radiologists in reading mammograms shall be of great importance. Thus,
new applications for these representations should be targeted towards these two important areas.

The three analyzing functions investigated during the past year (dyadic wavelets. phi-transform,
and hexagonal wavelets) were conceived as initial instances in the evolution of three specialized
detectors. During the next year, we expect that these three "detectors" shall evolve through formulations
that focus on three distinct types of mamrnpgraphic features: (1) microcalcifications, (2) spicular lesions
and (3) masses. The formulations driving these refinements shall be identified by the evaluation
methods described in this report. In summary, we have exceeded the goals as described in our
Statement of Work for the first year, and our research and development plans remain on schedule.

Below we list in summary, publications, presentations and talks accomplished by members of our
research group during our first year.

Publications:

(1) Laine A, Schuler S, Fan J, Huda W, "Mammographic Feature Enhancement by
Multiscale Analysis," to appear in IEEE Transactions in Medical Imaging.

(2) Laine A, Schuler S, Huda W, Honeyman JC and Steinbach BG,
"Hexagonal wavelet processing of digital mammography,"
SPIE Proceeding of Medical Imaging, Volume 1898 (1993), pp. 559-573.

(3) Laine A, Song S, Laine A, Huda, W, Honeyman JC and Steinbach BG,
"Adaptive multiscale processing for contrast enhancement,"
SPIE Biomedical Image Processing and Biomedical Visualization,

Volume 1905 (1993), pp. 521-532.

Presentations (& published abstracts):

(I) Laine A, Huda W, Honeyman JC, Steinbach BG, "Mammographic image processing using wavelet
processing techniques," Medical Physics 20 (1993) p. 1588 (Presented at the Fourth annual
meeting of the Canadian Organization of Medical Physicists, Ottawa 12-15 May 1993).

(2) Laine A, Huda W, Honeyman JC, Steinbach BG, "Mammographic image processing using wavelet
processing techniques," Medical Physics 20 (1993) p. 921 (Presented at the 35th Annual meeting
of the American Association of Physicists in Medicine, Washington DC 8-12 August 1993).

(3) Laine W, Huda W, Honeyman JC and Steinbach BG, "Mammographic image processing using
wavelet processing techniques," Scientific Program and Abstracts p. 96,
8th European Congress of Radiology, Vienna 12-17, September 1993.

(4) Steinbach BG, Laine A, Honeyman JC and Huda W, "Mammography image enhancement by using
wavelet transforms," Radiology 189 (P) 1993 p. 105 (Presented at the 79th Annual meeting of the
Radiological Society of North America, Chicago 28 November - 3 December 1993).
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Invited Talks:

(I) Laine A, "Mammographic feature enhancement by multiscale analysis," Division of Mathematics
and Image Processing, National Institutes of Health, Bethesda, MD, October 6, 1993.

(2) Laine A, "Wavelet processing techniques for digital mammography," and "Fundamentals of
wavelet analysis," Department of Radiology, University of Chicago, October 4, 1993.

(3) Huda W, "Digital mammography and wavelets image processing," presented at the Bradford
Royal Infirmary, Yorkshire, England 2 September 1993.

(4) Huda W, "Digital mammography and wavelets image processing," presented at the University of
Manchester College of Medicine, England, 6 September 1993.

(5) Huda W, "Digital mammography and wavelets image processing," presented at Hammersmith
Hospital, Royal Postgraduate Medical School, London, England, 10 September 1993.
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